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Abstract

In this study, a two-dimensional (2-D) heat transfer analysis was performed in circular and elliptic tube heat ex-
changers. The finite element method was used to discretize the fluid flow and heat transfer governing equations and a 2-D
isoparametric, four-noded, linear element was implemented for the finite element analysis program, FEAP (O.C. Zie-
nkiewicz, R.L. Taylor, The Finite Element Method, vol. 1, McGraw-Hill, London, 1989, Chapter 15). The numerical
results for the equilateral triangle staggering configuration, obtained with the new element were then validated quali-
tatively by means of direct comparison to previously published experimental results for circular tubes heat exchangers
(G. Stanescu, A.J. Fowler, A. Bejan, Int. J. Heat Mass Transfer 39 (2) (1996) 311-317). Next, a numerical geometric
optimization was conducted to maximize the total heat transfer rate between the given volume and the given external
flow both for circular and elliptic arrangements, for general staggering configurations. The results are reported for air in
the range 300 < Rep < 800, where L is the swept length of the fixed volume. Circular and elliptical arrangements with the
same flow obstruction cross-sectional area were compared on the basis of maximum total heat transfer. The effect of
ellipses eccentricity was also investigated. A relative heat transfer gain of up to 13% is observed in the optimal elliptical
arrangement, as compared to the optimal circular one. The heat transfer gain, combined with the relative pressure drop
reduction of up to 25% observed in previous studies (H. Brauer, Chem. Process Eng., August (1964) 451-460; S.N.
Bordalo, F.E.M. Saboya, Determinagao experimental dos coeficientes de perda de carga em trocadores de calor de tubos
circulares e elipticos aletados, in: Proceedings of the 13th COBEM, Congresso Brasileiro de Engenharia Mecanica (in
Portuguese), Belo Horizonte, Brasil, 1995) show that the elliptical arrangement has the potential for a considerably better
overall performance than the traditional circular one. © 2001 Published by Elsevier Science Ltd.

1. Introduction

Economic and environmental considerations have
brought the need for performance improvement on all
engineering applications, aiming to rationalize the use of
available energy and reduction of lost work. Many in-
dustrial applications require the use of tubes heat ex-
changers, that have to be sized according to space
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availability. Therefore, the volume occupied by the array
of tubes is fixed. The volume constrained optimization
problem consists on finding the optimal spacing between
tubes (or cylinders), of a known geometry, such that
maximum overall heat transfer (or thermal conductance)
between the array and the surrounding fluid is achieved.
A typical application of such fundamental optimization
results is on the development of cooling techniques for
electronic packages. Considerable effort has been put on
finding optimal spacings for many different types of ge-
ometries, both for natural and forced convection [2,5-15].

Stanescu et al. [2] reported the optimal spacing of
circular cylinders in free-stream cross-flow forced
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Nomenclature q. dimensionless overall thermal
conductance, Eq. (18)
a larger ellipse semi-axis, m G, max maximum dimensionless overall
A, minimum free flow cross-sectional thermal conductance
area, m2 Rep Reynolds number based on tube
b smaller ellipse semi-axis, m diameter
Cp fluid specific heat at constant Rer Reynolds number based on array
pressure, J/(kg K) length
Cc(0) momentum capacity matrix S spacing between rows of tubes, m,
D tube diameter, m Fig. 1
e ellipses eccentricity, Eq. (20) Shax maximum spacing between rows of
F,F momentum force vectors tubes, m
G energy force vector S/D dimensionless spacing between rows
h equivalent average heat transfer of tubes (circular arrangement)
coefficient, W/(m? K) (S/D) o optimal dimensionless spacing
H array height, m between rows of tubes (circular
k fluid thermal conductivity, arrangement)
W/(m K) S/2b dimensionless spacing between rows
Ki1,Ki1», K51, K>, viscous stiffness matrices of tubes (elliptic arrangement)
Ki1,K12, Ko, Ksy  penalty matrices (S /2b)Opt optimal dimensionless spacing
L array length, m between rows of tubes (elliptic
L diffusive matrix arrangement)
L/D array length to diameter aspect T temperature, K
ratio Tout average fluid temperature at the
L/2b array length to smaller ellipses axis elemental channel outlet, K
aspect ratio Ty tube surface temperature, K
Mee fluid mass flow rate entering one Ty free stream temperature, K
elemental channel, kg/s u,v velocity components, m/s
n normal direction u,v dimensionless velocity
N number of tubes in one elemental components
channel U, free stream velocity, m/s
Nec number of elemental channels w array width, m
Nu array average Nusselt number X,y Cartesian coordinates, m
P pressure, N/m? X,Y dimensionless cartesian
P dimensionless pressure coordinates
Pey. Peclet number based on array
length Greek symbols
Pr fluid Prandtl number, v/o o thermal diffusivity, m?/s
q overall heat transfer rate, W y penalty factor
qn local normal heat flux, W/m? & mesh convergence criterion,
q’ average normal heat flux at the ith Eq. (19)
tube surface, W/m? 0 dimensionless temperature
q dimensionless overall thermal Oout dimensionless average fluid
conductance, Eq. (15) temperature at the elemental
Grmax maximum dimensionless overall channel outlet

fluid kinematic viscosity, m?/s

convection, which followed the study presented by Bejan
et al. [13] on the optimization of arrays of circular cyl-
inders in natural convection. Both studies considered
only equilateral triangle staggering configurations. The
tube geometry was not investigated in those studies as an
additional degree of freedom. The elliptic tube geometry
is expected to perform better, aerodynamically, than the

circular one, i.e., combining reduction in total drag force
and increase in total heat transfer, as it was reported by
Rocha et al. [16], when comparing elliptic and circular
sections in the specific cases of one and two-row tubes
and plate fin heat exchangers. The results showed a heat
transfer gain of up to 18% when comparing elliptic to
circular arrangements in the studied cases.
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The present study focuses on the geometric opti-
mization (optimal spacing) of staggered circular and
elliptic tubes in a fixed volume. The problem is treated in
a fundamental (geometric) sense, without specific refer-
ence to an application (electronics cooling, compact heat
exchangers, etc). The optimizations are conducted nu-
merically, by using the finite element method to solve the
conservation equations (mass, momentum and energy),
to obtain the velocity and temperature fields inside the
arrays, thereafter computing the overall heat transfer
rate between the tubes and the fluid. First, the numerical
results obtained with the finite element code are vali-
dated by direct comparison to previously published ex-
perimental results for circular tubes heat exchangers
with equilateral triangle staggering configurations [2].
Next, the equilateral triangle staggering configuration is
relaxed and numerical optimization results are obtained
for circular and elliptic arrangements, for general stag-
gering configurations. Circular and elliptical arrange-
ments with the same flow obstruction cross-sectional
area are then compared on the basis of maximum total
heat transfer. Appropriate non-dimensional groups are
defined and the optimization results reported in dimen-
sionless charts.

2. Theory

Fig. 1 is a general simple sketch of the problem
configuration. It was shown by Fowler and Bejan [17]
that in the laminar regime, the flow through a large bank
of cylinders can be simulated accurately by calculating
the flow through a single channel, such as that illustrated
by the unit cell seen in Fig. 1. Because of the geometric
symmetries, there is no fluid exchange and no heat
transfer between adjacent channels. In Fig. 1, L and H
are the length and height of the array, and not shown is
the width of the array (tube length), W.

The governing equations are the mass, momentum
and energy equations which were simplified in ac-
cordance with the assumptions of two-dimensional
(2-D) incompressible steady-state flow with constant
properties, for a Newtonian fluid:
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Fig. 1. Problem sketch and computational domain.

where dimensionless variables have been defined as fol-
lows:

_ ) _r
(u,U) T_Toc UooL
u,v)= U 0:7T 7 Rep = r
o] w — loo (6)
L

where (x,y) are the Cartesian coordinates, m; p the
pressure, N/m?; p the fluid density, kg/m?; U, the free
stream velocity, m/s; (u,v) the fluid velocities, m/s; T
the fluid temperature, K; 7., the free stream tempera-
ture, K; 7, the tubes surface temperature, K; L the
length of the array in the flow direction, m; v the fluid
kinematic viscosity, m?/s and o is the fluid thermal
diffusivity, m?/s.
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To complete the problem formulation, the following
boundary conditions are specified for the extended
computational domain of the unit cell of Fig. 1:

4

ou a0

(C) U=V=0, 0=1, 9)
ou or o0

(D) &—&—O, &—0. (10)

Once the geometry of the extended computational do-
main defined by the unit cell of Fig. 1 is specified, Eqgs.
(1)-(10) deliver the resulting velocities, pressure and
temperature fields in the domain.

The optimization objective is to find the optimal ge-
ometry, such that the volumetric heat transfer density is
maximized, subject to a volume constraint. The en-
gineering design problem starts by recognizing the finite
availability of space, i.e., an available space L x H x W
as a given volume that is to be filled with a heat ex-
changer. To maximize the volumetric heat transfer
density means that the overall heat transfer rate between
the fluid inside the tubes and the fluid outside the tubes
will be maximized.

The critical part of an optimization study consists of
identifying the degrees of freedom (variables) that allow
the maximization (or minimization) of the chosen figure
of merit, in this case, the maximization of the overall
heat transfer rate between the tubes and the free stream,
g. The first variable identified in this way was the spacing
between rows of tubes, S. For a given tube arrangement,
containing a pre-specified number of elemental channels
(or unit cells), N, there is a maximum spacing between
rows, Smax, such that the arrangement fits in the avail-
able space, L x H x W. To justify the choice of the pa-
rameter S to be optimized, it is sufficient to analyze two
extremes: S — 0 and S — Spax. When S — 0, the mini-
mum free flow cross-sectional area, 4., is reduced, and
for a given free stream velocity condition at the ar-
rangement inlet, U, the mass flow rate in the elemental
channel is also reduced and, therefore ¢ — 0. When
S — Smax, 4. increases, thus the flow velocity at the
minimum cross-sectional area is reduced, the heat
transfer coefficient also decreases and ¢ — 0. This be-
havior at the extremes clearly indicates the existence of a
maximum ¢ in the interval 0 < S < Sp.x, provided that
Smax 18 large enough.

In order to perform the comparison between the el-
liptic and circular arrangements, a criterion was adopted
to preserve similar flow characteristics in the unit cell,
1.e., the flow obstruction cross-sectional areas of the
arrangements under comparison were made equal. The

same criterion was adopted by Rocha et al. [16] for tubes
and plate fin heat exchangers. Hence, in all cases, the
diameter of the circles, D, was equal to the smaller axis
of the ellipses, 2b.

3. Numerical method

The numerical solution of Egs. (1)-(10) was obtained
utilizing the finite element method [1]. This way, the
velocities and temperature fields in the unit cell of Fig. 1
were determined.

The first step in the numerical implementation was
the elimination of the pressure variable from Egs. (2)
and (3), by using a penalty model, approximating Eq. (1)
as follows [18]:
oU oy P
o Tar T y’ (1)
where y is the penalty factor, which must be assumed
large enough in order to satisfy mass conservation ap-
proximately.

The implementation of the finite element method for
the solution of Egs. (1)-(10) starts from obtaining the
variational (weak) form of the problem. Next, the weak
form is discretized, by a suitable method. Due to the
characteristics of the flow inside the arrangement of
Fig. 1, physically, it is seen that the solution at a speci-
fied location in the unit cell depends preferably on what
happens upstream, considering the direction of the
forced flow. It is well known that the Galerkin method,
which is the analogue of a central differences scheme in
the finite differences method, does not capture this
physical aspect in its discretized equations. Therefore,
the discretization utilized in this work is an ‘upwind’
scheme proposed by Hughes [19], where it is possible to
adequate the discrete form of the problem to the phys-
ical characteristics of the flow.

After developing the discrete form of the problem,
the resulting algebraic equations are arranged in a ma-
tricial form for the steady-state 2-D problem as follows:

59 o8]

n 2K + K K5 l:/1
K K +2K» || Uy
n {@11 KIZ]{UI }
Ky Kn] | U
_JhA
~{h} (12)
D(O)T+ LT = G, (13)

where C(U) is the capacity matrix that contains the
advective terms of the momentum equations, which
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depends non-linearly on the solution U (bipartitioned
vector: U; — direction X and U, — direction Y, each one
with a number of components equal to the number of
unknowns in the mesh); Kj;,Kj,,K> and Kj, are the
stiffness matrices with constant coefficients (constant
viscosity), that contain the viscous terms of the mo-
mentum equations; Kll,K 12, K>, and Ky, are the penalty
matrices, that contain the terms due to the elimination
of the pressure variable from the momentum equations
by using Eq. (11), which were computed with reduced
integration (one point in each direction with linear shape
functions) to avoid locking; D(U) is the capacity matrix
that contain the advective terms of the energy equation;
L is the diffusive matrix with constant coefficients (con-
stant thermal conductivity), that contain the diffusive
terms from the energy equation; F; and F, are the force
vectors of the momentum equations that contain the
field forces and the velocity boundary conditions, and G
is the force vector of the energy equation that contains
the heat source terms of the energy equation and the
temperature boundary conditions.

For the sake of brevity, the mathematical details of
the components of the above-described matrices are not
presented. However, the reader is directed to the work of
Reddy and Gartling [20], which was the basis for the
formulation implemented computationally in the
present study. A Fortran subroutine was written to
implement the Navier-Stokes and Energy equations in
two dimensions as an isoparametric, four-noded, linear
element, which was then aggregated to the open code
called ‘finite element analysis program’, FEAP, origi-
nally written by Zienkiewicz and Taylor [1].

4. Results and discussion

The non-linear system built from Egs. (12) and (13)
was solved by the Newton-Raphson method [20], to
obtain the velocities and temperatures in the computa-
tional domain of Fig. 1.

The dimensionless overall thermal conductance g, or
volumetric heat transfer density for the circular ar-
rangements was defined as follows, for the sake of
comparison with the results of Stanescu et al. [2]:

‘I/(Tw - TOO)

2 (14)
KLHW /(2b)

q=

where the overall heat transfer rate between the tubes
and the free stream, g, has been divided by the con-
strained volume, LHW; k is the fluid thermal conduc-
tivity, W/(m K), and 25 = D the ellipse smaller axis or
tube diameter.

The calculation of ¢ is conducted numerically, for
the circular configuration, re-arranging Eq. (14) as
follows:

_ N.[DV1’D &
=57 7%

i=1

q'Ln
k(TWTDO)]’ (15)

where ¢! is the average normal heat flux at the ith tube
surface, W/m?; N is the number of tubes in one elemental
channel.

In Eq. (15), g/ is calculated from the local normal
heat flux at the tube surface given by

q:l:k(zl>7 i:17"'7N7 (16)
nj;

where n denotes the normal direction.

The computation of the heat fluxes for Eq. (16) is
done by post-processing the temperature results ob-
tained from the finite element solution.

For the comparison between the elliptic and circular
arrangements, the dimensionless overall thermal con-
ductance is computed alternatively from a balance of
energy in one elemental channel, noting that:

q= Necrheccp(Toul - Too)7 (17)

where e, = pU,. ((S + 2b)/2)W, which is the fluid mass
flow rate entering one elemental channel, kg/s; ¢, is the
fluid specific heat at constant pressure, J/(kg K), and T,y
is the average fluid temperature at the elemental channel
outlet.

The dimensionless overall thermal conductance
computed by Eq. (14), using Eq. (17) is therefore re-
named as g . The calculation of g is conducted nu-
merically, re-arranging Eq. (14) as follows:

2
4. =" prkey [%} 2 (%+ l)eom, (18)
where Pr is the fluid Prandtl number, v/o.

The results obtained from Eq. (18) are therefore ex-
pected to be more accurate than the results obtained
with Eq. (15). The reason is that the former are obtained
directly from the finite element temperature solution,
whereas the latter are obtained from post-processing the
finite element solution. It is well known that the nu-
merical error in the derivative of the solution is larger
than the numerical error in the solution itself.

To obtain accurate numerical results, several mesh-
refinement tests were conducted. The monitored quan-
tity was the dimensionless overall thermal conductance,
computed either with Eq. (15) or with Eq. (18), ac-
cording to the following criterion:

qw’ - qw'—l ‘/

where j is the mesh iteration index, i.e., as j increases the
mesh is more refined. When the criterion is satisfied, the
j — 1 mesh is selected as the converged mesh.

The criterion defined by Eq. (19) was used to test the
extension of the computational domain defined in the

e= g.,|<0.01, (19)
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unit cell of Fig. 1. An extra-length L/2 had to be added
to the computational domain, upstream and down-
stream of the unit cell to represent the actual flow, and
satisfied Eq. (19), when compared to an extra-length L.
The last three mesh iterations had (a) 2730 nodes and
2508 elements; (b) 5460 nodes and 5180 elements, and
(c) 5670 nodes and 5380 elements, with a relative error
below 3%, comparing (a) and (b), and below 1%, com-
paring (b) and (c), according to Eq. (19). Therefore, for
all cases the mesh was established with 5460 nodes and
5180 elements. All meshes were more refined in the re-
gions close to the tubes where the highest gradients in
the solution were expected.

The numerical results obtained with the finite element
code are validated by direct comparison to previously
published experimental results for circular tubes heat
exchangers with equilateral triangle staggering con-
figurations obtained with L = 39.2 mm, H = 35.2 mm,
W =134 mm and D = 6.35 mm [2].

All the arrangements in this study (elliptic and cir-
cular) had N, = 6 and N = 4.

The numerical results shown in Fig. 2 were obtained
with Eq. (15). Fig. 2 also shows the experimental results
obtained by Stanescu et al. [2] for Rep = U,D/
v =50 and 100. The experimentally determined § agrees
qualitatively with the numerical results, mainly with
respect to the identification of (S/D),,. The agreement
is remarkable, mainly with respect to the identification
of the optimal spacings, if we think that the tested array
was not a large bank of cylinders and, in the exper-
iments, with uniform heat flux, while in the numerical
simulations it was infinitely wider (i.e., no influence from
the wind tunnel walls) and with isothermal cylinders.

8]
E L/D=62
1 =0.
7 Re_ =125 Pr=0.72
~ ] D Stanescu et al.
67 100 @ Re =50
] /\ A Re =100
. D
5—
| o
4 .
] 50 = = B
37
: B
2 e T
0 0.5 1 1.5
S/D

Fig. 2. Numerical and experimental results for circular tubes
heat exchangers with equilateral triangle staggering configura-
tions.

Next, numerical optimization results (i.e., identifica-
tion of the maxima) are obtained for the circular and
elliptic arrangements, for general staggering configura-
tions. The dimensionless thermal conductance is here-
after computed with Eq. (18), in the form of g,.

Figs. 3-5 show maxima for ¢, with respect to (S/2b),
for three different values of ellipses eccentricity, i.e.,
e =1 (circle), 0.8 and 0.65:

b
_b 20
e=, (20)
8]
] Li2b=6.2
] /\ Pr=072
N 7: 775=R&3L e=1
q, ]
61 T T 0
] 465
5 —
1 310
4] //"’r
3]
-t
0 0.5 1 1.5 2

S/2b

Fig. 3. Numerical results for circular tubes (e =1) heat
exchangers with general staggering configurations.

97
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8‘: Pr=0.72
- ] /\ e=08
q, 7 775=Re, L
1~  TT—— w0
6]
. /’——_465
57
, 310
4
3
T S e
0 0.5 1 1.5 2
S/2b

Fig. 4. Numerical results for elliptic tubes (e =0.8) heat
exchangers with general staggering configurations.
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q, ]
7] /’\620
6—: 465
> /T
4
3+——rr———r
0 0.5 1 1.5 2

S/2b

Fig. 5. Numerical results for circular tubes (e = 0.65) heat ex-
changers with general staggering configurations.

where b is the smaller ellipse semi-axis and « is the larger
ellipse semi-axis.

The influence of the variation of Rey is also investi-
gated in Figs. 3-5. As Rep increases g, increases. The
maximum is less pronounced for lower values of Re; .

Figs. 6 and 7 show the effect of ellipses eccentricity on
q., for Re;, = 465 and 620, respectively. As the eccen-
tricity decreases, g, increases, therefore the elliptic ge-
ometry improves the overall heat transfer rate between
the tubes and the free stream.

The results reported in Figs. 4-7 are summarized in
Figs. 8 and 9. The effect of ellipses eccentricity on g, ;..

77
] L/2b=62
] Pr=0.72
~ . Re, =465
q, ] v
67 e=0.65
] 0.8
1
5 /’\
]
4 ——— T — T
0 0.5 1 1.5

S/2b

Fig. 6. The effect of ellipses eccentricity on g, (Rep = 465).

8
L/2b=6.2
Pr=0.72
~ Re, =620
q, ’

e=0.65

~

?7

0.8

=)}

W

S/2b

Fig. 7. The effect of ellipses eccentricity on g, (Rep = 620).

10
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9] Pr=0.72
Rt B L. u
7 ]
o
57
] 310\
4
+———T 7
0.6 0.7 0.8 0.9 1
€

Fig. 8. The effect of ellipses eccentricity on the maximum
overall thermal conductance.

is depicted in Fig. 8, where, for all Rey, G, ..., increases as
the eccentricity decreases, i.e., the flatter the ellipses are
the higher the overall heat transfer will be. In a quan-
titative analysis, it is important to stress that a 13%
maximum relative heat transfer gain, in comparison with
the traditional circular arrangement, was observed for
the elliptical arrangement with e = 0.65, in the numeri-
cal simulations. Fig. 9 shows that the optimal spacing
decreases as the free stream velocity (or Rer) increases.

There was no loss of generality of the optimization
results by fixing N.. = 6 in the present study, as it is
deduced through Egs. (15) and (18), dividing both sides
by N... The effect of varying the number of tubes in one
elemental channel, N, is still to be investigated, but it
should be noted that N = L/a represents the limit where
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2
1 L/2b=62
] Pr=0.72
- 310=Re,
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(S12b)_ ]
1
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] 620
0.5
] 775
r+————1T———r1T 7T
0.6 0.7 0.8 0.9 1
e

Fig. 9. The effect of ellipses eccentricity on the optimal spacing
for maximum overall thermal conductance.

the ellipses ends (edges) touch. However, it is not diffi-
cult to verify that the figure of merit given by Eq. (14) is
an analogue of the average Nusselt number for the
whole arrangement, § = Nu = h(2b)/k, noting that
h=q(2b)/((T, — To.)LHW), where & is the equivalent
average heat transfer coefficient, W/(m? K). Therefore,
for a larger number of rows, g, (or ¢ ,..) computed
for N =4 is a fairly good approximation. This is ex-
plained by the fact that, with a large number of rows, the
flow will be fully developed, therefore with no significant
changes in the average Nusselt number for a particular
geometry, either circular or elliptic. This behavior was
observed experimentally comparing three-row circular
results reported by Saboya and Sparrow [21], with two-
row circular results reported by Rosman et al. [22], both
for finned heat exchangers. The same phenomenon was
also observed numerically in a recent study by Fowler et
al. [15], for staggered plates in forced convection, where
it was reported that the effect of N on ¢,,,,, is almost non-
existent for 2 <N < 65.

5. Conclusions

This study demonstrates that the geometric ar-
rangement of staggered circular or elliptic tubes can be
optimized for maximum heat transfer (or maximum
thermal conductance), when the optimization is sub-
jected to an overall volume constraint. The existence of
optimal spacings between rows of tubes was demon-
strated through numerical results obtained from two
alternative ways, i.e., Egs. (15) and (18). The approach
was to formulate the problem fundamentally as a vol-
ume-constrained geometric optimization study, where
appropriate non-dimensional groups were identified and
generalized results presented in dimensionless charts.
From the point of view of practical application of the

results herein presented, it is important to stress that
they will apply depending on how similar the actual
design under consideration is to the configuration pre-
sented in Fig. 1, such that the approximate optimal ge-
ometry can be predicted. However, from the
fundamental point of view, the results show that there
will always be an optimal spacing between rows of tubes
in circular and elliptic tubes heat exchangers, which is
important to be found.

From the heat transfer point of view, it was shown
that the elliptic configuration performs better than the
circular one. Among the studied cases, a maximum rel-
ative heat transfer gain was of 13%, for e = 0.65, with
Rep = 465. The heat transfer gain, combined with the
relative pressure drop reduction of up to 25% observed
in previous studies [3,4] show the elliptical arrangement
has the potential for a considerably better overall per-
formance than the traditional circular one.
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